Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.388
Filtrar
1.
Small ; : e2400164, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573934

RESUMO

Captured by high theoretical capacity and low-cost, Sodium-Sulfur (Na-S) batteries have been deemed as promising energy-storage systems. However, their electrochemical properties, containing both cycling and rate properties, still suffer from the notorious "shuttle effect" of polysulfide. Herein, through the effective regulation of pore sizes, a series of S@SiO2 cathode materials are obtained. Benefitting from the abundant pore channels of SiO2 particles, the sulfur loading is as high as 76.3%. Importantly, a suitable pore size can lead to adequate reaction and rapid diffusion behaviors, resulting in excellent electrochemical performances. Specifically, at 2.0 A g-1, the initial capacity of the as-optimized sample can be up to 1370.6 mAh g-1. Surprisingly, even after 1050 cycles, it could achieve a high reversible capacity of 1280.8 mAh g-1 with an attenuation rate of 0.089%. At 5.0 A g-1, after 500 cycles, the capacity can still remain ≈ 1132.6 mAh g-1 (capacity retention rate, 97.5%). Given this, the work is anticipated to offer an effective strategy for advanced electrodes for Na-S batteries.

2.
Hortic Res ; 11(4): uhae036, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38595909

RESUMO

Transcription factors with basic helix-loop-helix (bHLH) structures regulate plant growth, epidermal structure development, metabolic processes, and responses to stress extensively. Sea lavender (Limonium bicolor) is a recretohalophyte with unique salt glands in the epidermis that make it highly resistant to salt stress, contributing to the improvement of saline lands. However, the features of the bHLH transcription factor family in L. bicolor are largely unknown. Here, we systematically analyzed the characteristics, localization, and phylogenetic relationships of 187 identified bHLH family genes throughout the L. bicolor genome, as well as their cis-regulatory promoter elements, expression patterns, and key roles in salt gland development or salt tolerance by genetic analysis. Nine verified L. bicolor bHLH genes are expressed and the encoded proteins function in the nucleus, among which the proteins encoded by Lb2G14060 and Lb1G07934 also localize to salt glands. Analysis of CRISPR-Cas9-generated knockout mutants and overexpression lines indicated that the protein encoded by Lb1G07934 is involved in the formation of salt glands, salt secretion, and salt resistance, indicating that bHLH genes strongly influence epidermal structure development and stress responses. The current study lays the foundation for further investigation of the effects and functional mechanisms of bHLH genes in L. bicolor and paves the way for selecting salt-tolerance genes that will enhance salt resistance in crops and for the improvement of saline soils.

3.
Chem Soc Rev ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600823

RESUMO

Alumina materials, as one of the cornerstones of the modern chemical industry, possess physical and chemical properties that include excellent mechanical strength and structure stability, which also make them highly suitable as catalyst supports. Alumina-supported Pd-based catalysts with the advantages of exceptional catalytic performance, flexible regulated surface metal/acid sites, and good regeneration ability have been widely used in many traditional chemical industry fields and have also shown great application prospects in emerging fields. This review aims to provide an overview of the recent advances in alumina and its supported Pd-based catalysts. Specifically, the synthesis strategies, morphology transformation mechanisms, and structural properties of alumina with various morphologies are comprehensively summarized and discussed in-depth. Then, the preparation approaches of Pd/Al2O3 catalysts (impregnation, precipitation, and other emerging methods), as well as the metal-support interactions (MSIs), are revisited. Moreover, Some promising applications have been chosen as representative reactions in fine chemicals, environmental purification, and sustainable development fields to highlight the universal functionality of the alumina-supported Pd-based catalysts. The role of the Pd species, alumina support, promoters, and metal-support interactions in the enhancement of catalytic performance are also discussed. Finally, some challenges and upcoming opportunities in the academic and industrial application of the alumina and its supported Pd-based are presented and put forward.

4.
Cell Rep ; 43(4): 114077, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592974

RESUMO

Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.

5.
Plant Physiol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588029

RESUMO

Salt gland is an epidermal Na+ secretory structure that enhances salt resistance in the recretohalophyte sea lavender (Limonium bicolor). To elucidate the salt gland development trajectory and related molecular mechanisms, we performed single-cell RNA sequencing of L. bicolor protoplasts from young leaves at salt gland initiation and differentiation stages. Dimensionality reduction analyses defined 19 transcriptionally distinct cell clusters, which were assigned into four broad populations-promeristem, epidermis, mesophyll, and vascular tissue-verified by in situ hybridization. Cytokinin was further proposed to participate in salt gland development by the expression patterns of related genes and cytological evidence. By comparison analyses of scRNA-seq with exogenous application of 6-benzylaminopurine, we delineated five salt gland development-associated sub-clusters and defined salt gland specific differentiation trajectories from sub-clusters 8, 4, or 6 to sub-cluster 3 and 1. Additionally, we validated the participation of TRIPTYCHON and the interacting protein Lb7G34824 in salt gland development, which regulated the expression of cytokinin metabolism and signaling related genes such as GLABROUS INFLORESCENCE STEMS 2 to maintain cytokinin homeostasis during salt gland development. Our results generated a gene expression map of young leaves at single-cell resolution for the comprehensive investigation of salt gland determinants and cytokinin participation that helps elucidate cell fate determination during epidermis formation and evolution in recretohalophytes.

6.
J Ethnopharmacol ; 329: 118141, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570149

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW: Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS: To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS: This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION: In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.

7.
Sci Immunol ; 9(94): eadg8817, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640251

RESUMO

CD4+ regulatory T (Treg) cells accumulate in the tumor microenvironment (TME) and suppress the immune system. Whether and how metabolite availability in the TME influences Treg cell differentiation is not understood. Here, we measured 630 metabolites in the TME and found that serine and palmitic acid, substrates required for the synthesis of sphingolipids, were enriched. A serine-free diet or a deficiency in Sptlc2, the rate-limiting enzyme catalyzing sphingolipid synthesis, suppressed Treg cell accumulation and inhibited tumor growth. Sphinganine, an intermediate metabolite in sphingolipid synthesis, physically interacted with the transcription factor c-Fos. Sphinganine c-Fos interactions enhanced the genome-wide recruitment of c-Fos to regions near the transcription start sites of target genes including Pdcd1 (encoding PD-1), which promoted Pdcd1 transcription and increased inducible Treg cell differentiation in vitro in a PD-1-dependent manner. Thus, Sptlc2-mediated sphingolipid synthesis translates the extracellular information of metabolite availability into nuclear signals for Treg cell differentiation and limits antitumor immunity.


Assuntos
Neoplasias , Esfingosina/análogos & derivados , Linfócitos T Reguladores , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Serina/metabolismo , Esfingolipídeos/metabolismo , Microambiente Tumoral
8.
Mol Biol Rep ; 51(1): 557, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643317

RESUMO

BACKGROUND: Post-harvest anthracnose (PHA) of mango is a devastating disease, which results in huge loss to mango producers and importers. Various species of PHA, diverse pathogenicity, and different resistance towards fungicides make it essential to evaluate the pathogen taxonomic status and biological characterization. METHODS AND RESULTS: Two strains DM-1 and DM-2 isolated from the fruit of DaQing mango from Vietnam were identified as Colletotrichum fructicola and C. asianum respectively, based on the morphological features, along with the phylogenetic tree of ITS and ApMat combined sequences. The growth status of different Colletotrichum strains under different conditions was analyzed to reveal the biological characteristics. The optimum growth temperature of DM-1 and DM-2 was 28 °C and mycelia grew rapidly in the dark. Both strains could grow in media with pH 4-11, while the optimum pH value was 6. Maltose and soluble starch were the most suitable carbon source for DM-1 and DM-2 respectively, and the peptone was the most suitable nitrogen source for both strains. The lethal temperatures were recorded as 55 °C 5 min for DM-1, and 50 °C 10 min for DM-2. CONCLUSIONS: To the best of our knowledge, it is the first study reporting the identification of the pathogens: C. fructicola and C. asianum responsible for postharvest fruit anthracnose of mango in Vietnam.


Assuntos
Colletotrichum , Mangifera , Mangifera/microbiologia , Filogenia , Vietnã , Doenças das Plantas/microbiologia
9.
Nutr Neurosci ; : 1-17, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622917

RESUMO

OBJECTIVES: The study aimed to explore whether TP could improve memory in the aged type 2 diabetic rat model by regulating microbiota-immune-synaptic plasticity axis. METHODS: The experiment was divided into two parts. Firstly, to investigate the effects of TP on the physiopathology of the aged T2DM model rats, rats were randomly divided into the Normal control group, the aged group, the Aged T2DM model group, the TP 75, 150, 300 mg/kg groups, the 150 mg/kg Piracetam group and the 3 mg/kg Rosiglitazone group. Then, to further verify whether TP improved memory in aged T2DM rat model by regulating intestinal flora, the fecal microbiota transplantation (FMT) from the rats in the 300 mg/kg TP group into the rats in the aged T2DM model group was carried out. Effects on gut microbiota, colonic integrity (epithelial tight junction proteins), and endotoxemia (serum LPS) were examined, along with synaptic structure, synaptic plasticity-related structural proteins and inflammation signaling of the hippocampus in our study. RESULTS: Our results demonstrated that TP alleviated memory impairments in the aged T2DM rat model. The specific outcomes were as follows: TP 300 mg/kg corrected the gut dysbacteriosis, alleviated intestinal permeability reduction and peripheral/central inflammation, inhibited the TLR4/NF-κB signaling pathway. Meanwhile, TP improved the synaptic plasticity in the hippocampus of the aged T2DM model rats, whose expressions of SYN, PSD 95, NMDAR1 and GluR1 in hippocampus were significantly up-regulated. Surprisingly, rats of the FMT group displayed the same changes. DISCUSSION: TP improves the memory in aged T2DM rat model. The mechanism may be related to the alteration of gut flora, which can inhibit hippocampal TLR4/NF-κB signaling to attenuate neuroinflammation, then improve synaptic plasticity. The study proposes that TP interventions aimed at manipulating the gut microbiota may hold great potential as an effective approach for preventing and treating this disease.

10.
PLoS One ; 19(4): e0299080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635556

RESUMO

This study investigates the positive coupling between the sports industry and tourism, exploring the ways to promote their interconnection. Under state guidance, the integration of sports industry services is facilitated to attract sports culture and tourism fairs, leveraging regional economic development advantages to enhance the industrial market appeal. The emerging leisure consumption mode of sports tourism injects vitality into the economy, fostering the core sports service industry. The coupling of the education and tourism sectors is strategically aligned with long-term national policies. Using IoT technology, this paper employs a grey relational analysis to assess the coupling between the sports industry and tourism, revealing a significant correlation. Experimental results demonstrate a positive coupling trend, likened to conjoined twins with a natural material basis and technical support. This coupling not only aligns with industry trends but also resonates with the "environmental protection era," "green era," and "ecological era," marking a pivotal aspect of industrial development. The study contributes valuable insights into the symbiotic relationship between the sports and tourism industries, emphasizing their interconnectedness and the positive implications for economic and environmental sustainability.


Assuntos
Internet das Coisas , Esportes , Turismo , Indústrias , Desenvolvimento Industrial , Desenvolvimento Econômico , China
11.
BMC Genomics ; 25(1): 329, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566035

RESUMO

BACKGROUND: Previously, a novel multiplex system of 64 loci was constructed based on capillary electrophoresis platform, including 59 autosomal insertion/deletions (A-InDels), two Y-chromosome InDels, two mini short tandem repeats (miniSTRs), and an Amelogenin gene. The aim of this study is to evaluate the efficiencies of this multiplex system for individual identification, paternity testing and biogeographic ancestry inference in Chinese Hezhou Han (CHH) and Hubei Tujia (CTH) groups, providing valuable insights for forensic anthropology and population genetics research. RESULTS: The cumulative values of power of discrimination (CDP) and probability of exclusion (CPE) for the 59 A-InDels and two miniSTRs were 0.99999999999999999999999999754, 0.99999905; and 0.99999999999999999999999999998, 0.99999898 in CTH and CHH groups, respectively. When the likelihood ratio thresholds were set to 1 or 10, more than 95% of the full sibling pairs could be identified from unrelated individual pairs, and the false positive rates were less than 1.2% in both CTH and CHH groups. Biogeographic ancestry inference models based on 35 populations were constructed with three algorithms: random forest, adaptive boosting and extreme gradient boosting, and then 10-fold cross-validation analyses were applied to test these three models with the average accuracies of 86.59%, 84.22% and 87.80%, respectively. In addition, we also investigated the genetic relationships between the two studied groups with 33 reference populations using population statistical methods of FST, DA, phylogenetic tree, PCA, STRUCTURE and TreeMix analyses. The present results showed that compared to other continental populations, the CTH and CHH groups had closer genetic affinities to East Asian populations. CONCLUSIONS: This novel multiplex system has high CDP and CPE in CTH and CHH groups, which can be used as a powerful tool for individual identification and paternity testing. According to various genetic analysis methods, the genetic structures of CTH and CHH groups are relatively similar to the reference East Asian populations.


Assuntos
Genética Populacional , Irmãos , Humanos , Filogenia , China , Mutação INDEL , Repetições de Microssatélites , Genética Forense/métodos , Frequência do Gene
12.
Phys Rev Lett ; 132(12): 126501, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579228

RESUMO

Two-dimensional moiré materials have emerged as the most versatile platform for realizing quantum phases of electrons. Here, we explore the stability origins of correlated states in WSe_{2}/WS_{2} moiré superlattices. We find that ultrafast electronic excitation leads to partial melting of the Mott states on timescales 5 times longer than predictions from the charge hopping integrals and that the melting rates are thermally activated, with activation energies of 18±3 and 13±2 meV for the one- and two-hole Mott states, respectively, suggesting significant electron-phonon coupling. A density functional theory calculation of the one-hole Mott state confirms polaron formation and yields a hole-polaron binding energy of 16 meV. These findings reveal a close interplay of electron-electron and electron-phonon interactions in stabilizing the polaronic Mott insulators at transition metal dichalcogenide moiré interfaces.

13.
Angew Chem Int Ed Engl ; : e202402215, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581164

RESUMO

The development of a methodology for synthesizing value-added urea (CO(NH2)2) via a renewable electricity-driven C-N coupling reaction under mild conditions is highly anticipated. However, the complex catalytic active sites that act on the carbon and nitrogen species make the reaction mechanism unclear, resulting in a low efficiency of C-N coupling from the co-reduction of carbon dioxide (CO2) and nitrate (NO3-). Herein,we propose a novel tandem catalyst of Mo-PCN-222(Co), in which the Mo sites serve to facilitate nitrate reduction to the *NH2 intermediate, while the Co sites enhance CO2 reduction to carbonic oxide (CO), thus synergistically promoting C-N coupling. The synthesized Mo-PCN-222(Co) catalyst exhibited a noteworthy urea yield rate of 844.11mg h-1 g-1, alongside a corresponding Faradaic efficiency of 33.90% at -0.4 V vs. reversible hydrogen electrode (RHE). By combining in situ spectroscopic techniques with density functional theory calculations, we demonstrate that efficient C-N coupling is attributed to a tandem system in which the *NH2 and *CO intermediates produced by the Mo and Co active sites of Mo-PCN-222(Co) stabilize the formation of the *CONH2 intermediate. This study provides an effective avenue for the design and synthesis of tandem catalysts for electrocatalytic urea synthesis.

14.
Clin Proteomics ; 21(1): 27, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580967

RESUMO

BACKGROUND: Colorectal Cancer (CRC) is a prevalent form of cancer, and the effectiveness of the main postoperative chemotherapy treatment, FOLFOX, varies among patients. In this study, we aimed to identify potential biomarkers for predicting the prognosis of CRC patients treated with FOLFOX through plasma proteomic characterization. METHODS: Using a fully integrated sample preparation technology SISPROT-based proteomics workflow, we achieved deep proteome coverage and trained a machine learning model from a discovery cohort of 90 CRC patients to differentiate FOLFOX-sensitive and FOLFOX-resistant patients. The model was then validated by targeted proteomics on an independent test cohort of 26 patients. RESULTS: We achieved deep proteome coverage of 831 protein groups in total and 536 protein groups in average for non-depleted plasma from CRC patients by using a Orbitrap Exploris 240 with moderate sensitivity. Our results revealed distinct molecular changes in FOLFOX-sensitive and FOLFOX-resistant patients. We confidently identified known prognostic biomarkers for colorectal cancer, such as S100A4, LGALS1, and FABP5. The classifier based on the biomarker panel demonstrated a promised AUC value of 0.908 with 93% accuracy. Additionally, we established a protein panel to predict FOLFOX effectiveness, and several proteins within the panel were validated using targeted proteomic methods. CONCLUSIONS: Our study sheds light on the pathways affected in CRC patients treated with FOLFOX chemotherapy and identifies potential biomarkers that could be valuable for prognosis prediction. Our findings showed the potential of mass spectrometry-based proteomics and machine learning as an unbiased and systematic approach for discovering biomarkers in CRC.

15.
Biomed Environ Sci ; 37(2): 157-169, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582978

RESUMO

Objective: China is among the 30 countries with a high burden of tuberculosis (TB) worldwide, and TB remains a public health concern. Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China. However, molecular epidemiological studies of Kashgar are lacking. Methods: A population-based retrospective study was conducted using whole-genome sequencing (WGS) to determine the characteristics of drug resistance and the transmission patterns. Results: A total of 1,668 isolates collected in 2020 were classified into lineages 2 (46.0%), 3 (27.5%), and 4 (26.5%). The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid (7.4%, 124/1,668), streptomycin (6.0%, 100/1,668), and rifampicin (3.3%, 55/1,668). The rate of rifampicin resistance was 1.8% (23/1,290) in the new cases and 9.4% (32/340) in the previously treated cases. Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains, respectively: 18.6% vs. 8.7 or 9%, P < 0.001. The estimated proportion of recent transmissions was 25.9% (432/1,668). Multivariate logistic analyses indicated that sex, age, occupation, lineage, and drug resistance were the risk factors for recent transmission. Despite the low rate of drug resistance, drug-resistant strains had a higher risk of recent transmission than the susceptible strains (adjusted odds ratio, 1.414; 95% CI, 1.023-1.954; P = 0.036). Among all patients with drug-resistant tuberculosis (DR-TB), 78.4% (171/218) were attributed to the transmission of DR-TB strains. Conclusion: Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Rifampina/farmacologia , Estudos Retrospectivos , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Mutação
16.
Biomed Environ Sci ; 37(3): 233-241, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582988

RESUMO

Objective: Hypertriglyceridemic waist (HW), hypertriglyceridemic waist-to-height ratio (HWHtR), and waist-to-hip ratio (WHR) have been shown to be indicators of cardiometabolic risk factors. However, it is not clear which indicator is more suitable for children and adolescents. We aimed to investigate the relationship between HW, HWHtR, WHR, and cardiovascular risk factors clustering to determine the best screening tools for cardiometabolic risk in children and adolescents. Methods: This was a national cross-sectional study. Anthropometric and biochemical variables were assessed in approximately 70,000 participants aged 6-18 years from seven provinces in China. Demographics, physical activity, dietary intake, and family history of chronic diseases were obtained through questionnaires. ANOVA, χ 2 and logistic regression analysis was conducted. Results: A significant sex difference was observed for HWHtR and WHR, but not for HW phenotype. The risk of cardiometabolic health risk factor clustering with HW phenotype or the HWHtR phenotype was significantly higher than that with the non-HW or non-HWHtR phenotypes among children and adolescents (HW: OR = 12.22, 95% CI: 9.54-15.67; HWHtR: OR = 9.70, 95% CI: 6.93-13.58). Compared with the HW and HWHtR phenotypes, the association between risk of cardiometabolic health risk factors (CHRF) clustering and high WHR was much weaker and not significant (WHR: OR = 1.14, 95% CI: 0.97-1.34). Conclusion: Compared with HWHtR and WHR, the HW phenotype is a more convenient indicator withhigher applicability to screen children and adolescents for cardiovascular risk factors.


Assuntos
Doenças Cardiovasculares , Cintura Hipertrigliceridêmica , Criança , Humanos , Masculino , Feminino , Adolescente , Cintura Hipertrigliceridêmica/complicações , Cintura Hipertrigliceridêmica/epidemiologia , Relação Cintura-Quadril , Fatores de Risco Cardiometabólico , Fatores de Risco , Estudos Transversais , Análise por Conglomerados , Razão Cintura-Estatura , China/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Circunferência da Cintura , Índice de Massa Corporal
17.
Polymers (Basel) ; 16(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611227

RESUMO

The global production of plywood is constantly increasing as its application in the furniture and interior decoration industry becomes more widespread. An urgent issue is how to decrease the formaldehyde released from plywood, considering its carcinogenic effect on humans and harm to the environment. Reducing the free formaldehyde content of the urea formaldehyde (UF) adhesives used in the preparation process is considered an effective method. Therefore, it is necessary to identify a new type of formaldehyde scavengers. Here, the strongly reducing substance sodium borohydride was used to reduce and degrade the free formaldehyde in UF adhesives, and its effects on the properties of the UF adhesive and plywood were studied. When 0.7% sodium borohydride was added to the UF adhesive with a molar ratio of formaldehyde to urea of 1.4:1, the free formaldehyde content of the UF resin decreased to 0.21%, which is 53% lower than that of the untreated control. Moreover, the formaldehyde released from the plywood was reduced to 0.81 mg/L, ~45% lower than that from the group. The bonding strength of the treated samples could reach ~1.1 MPa, which was only reduced by ~4% compared to that of the control. This study of removing formaldehyde from UF adhesive by reduction could provide a new approach for suppressing formaldehyde release from the final products.

18.
Front Plant Sci ; 15: 1338228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606066

RESUMO

The accurate identification of maize crop row navigation lines is crucial for the navigation of intelligent weeding machinery, yet it faces significant challenges due to lighting variations and complex environments. This study proposes an optimized version of the YOLOX-Tiny single-stage detection network model for accurately identifying maize crop row navigation lines. It incorporates adaptive illumination adjustment and multi-scale prediction to enhance dense target detection. Visual attention mechanisms, including Efficient Channel Attention and Cooperative Attention modules, are introduced to better extract maize features. A Fast Spatial Pyramid Pooling module is incorporated to improve target localization accuracy. The Coordinate Intersection over Union loss function is used to further enhance detection accuracy. Experimental results demonstrate that the improved YOLOX-Tiny model achieves an average precision of 92.2 %, with a detection time of 15.6 milliseconds. This represents a 16.4 % improvement over the original model while maintaining high accuracy. The proposed model has a reduced size of 18.6 MB, representing a 7.1 % reduction. It also incorporates the least squares method for accurately fitting crop rows. The model showcases efficiency in processing large amounts of data, achieving a comprehensive fitting time of 42 milliseconds and an average angular error of 0.59°. The improved YOLOX-Tiny model offers substantial support for the navigation of intelligent weeding machinery in practical applications, contributing to increased agricultural productivity and reduced usage of chemical herbicides.

19.
Mol Pharm ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622497

RESUMO

Tuberculosis (TB) is a chronic disease caused byMycobacterium tuberculosis (Mtb), which shows a long treatment cycle often leads to drug resistance, making treatment more difficult. Immunogens present in the pathogen's cell membrane can stimulate endogenous immune responses. Therefore, an effective lipid-based vaccine or drug delivery vehicle formulated from the pathogen's cell membrane can improve treatment outcomes. Herein, we extracted and characterized lipids fromMycobacterium smegmatis, and the extracts contained lipids belonging to numerous lipid classes and compounds typically found associated with mycobacteria. The extracted lipids were used to formulate biomimetic lipid reconstituted nanoparticles (LrNs) and LrNs-coated poly(lactic-co-glycolic acid) nanoparticles (PLGA-LrNs). Physiochemical characterization and results of morphology suggested that PLGA-LrNs exhibited enhanced stability compared with LrNs. And both of these two types of nanoparticles inhibited the growth of M. smegmatis. After loading different drugs, PLGA-LrNs containing berberine or coptisine strongly and synergistically prevented the growth of M. smegmatis. Altogether, the bacterial membrane lipids we extracted with antibacterial activity can be used as nanocarrier coating for synergistic antibacterial treatment of M. smegmatis─an alternative model of Mtb, which is expected as a novel therapeutic system for TB treatment.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38635348

RESUMO

In this paper, a bimetallic Na0.13Mg0.02V2O5·0.98H2O (NMVO) material with an interlayer spacing of 11.67 Å was synthesized by a simple preintercalation method as a cathode for zinc ionic batteries (ZIBs). The large layer spacing provides a wide channel for the embedding of Zn2+, resulting in high reversible capacity and ion diffusion kinetics. In addition, by virtue of the high electronic conductivity of metal ions, NMVO exhibits excellent electronic conductivity under the combined action of Na+ and Mg2+ bimetallic intercalation. At the same time, preintercalation ions and structural water act as interlayer pillars to stabilize the layer structure of NMVO during the cycling process. The above reasonable structural design endows the NMVO with excellent electrochemical performance. The battery with NMVO cathode delivers a high initial capacity of 126 mAh g-1 at 10 A g-1, and still remains at 76% after 5000 cycles, providing 100 Wh kg-1 energy density and 9.5 kW kg-1 power density (based on the mass of cathode). This bimetallic intercalation structure provides a general feasible scheme for the design of vanadium-based electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...